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Summary 

Small- sample efficiencies of eight ratio 
estimators of the population ratio are 

investigated by Monte Carlo methods, assuming a 
linear regression of y on x and x normally 
distributed. Efficiencies of three variance 
estimators are also investigated. Sample 
criteria for which expected values exist are 
used. From this study, Mickey's unbiased ratio 
estimator and the approximately unbiased ratio 
estimator obtained by Quenouille's method appear 
promising. 

1. Introduction 

Ratio estimators are often employed in 
sample surveys for estimating the population 
mean Y of a characteristic of interest 'y' or 

the population ratio utilizing a supple- 
mentary variate 'x' that is positively correlated 
with 'y'. It is well -known that the classical 
ratio estimator is biased and often, in practice, 
the bias may be negligible compared to standard 
error and can be neglected. However, the bias 
may become considerable in surveys with many 
strata and small or moderate size samples within 
strata if it is considered appropriate to use 
"seperate ratio estimators ". In these situ- 
ations, the use of unbiased or approximately 
unbiased (i.e., estimators with a smaller bias 
than the classical ratio estimator) ratio esti- 
mators may be of great advantage. Therefore, in 
recent years, considerable attention has been 
given to the development of unbiased and approxi- 
mately unbiased ratio estimators. 

In this paper we shall, without loss of 
generality, confine ourselves to estimation of 
ratios (assuming the population mean X is known). 
Further, to simplify the discussion we shall con- 
fine ourselves to simple random sampling and 
assume the population size N is infinite. 

If a simple random sample of n pairs (yi,xi) 

is drawn, the classical ratio estimator of R 
is given by 

r 

X 

(1) 

where and are the sample means of and xi 

respectively. The usual estimator of the vari- 
ance of r is: 

v(r) = (sÿ - 2rsxy + (2) 

where s2 and the sample mean squares of 

xi and yi respectively and s is the sample 
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mean product of xi and It is well known that 

the bias of v(r) is of order l /n. Kokan (1963) 
has investigated the large- sample stabilities of 
v(r) and the unbiased variance estimator: 

s 
2 

v y 
x 

where is the estimator of R not using the 
sample x- information. He has shown that the 
coefficient of variation of v(r) is always larger 
than that of v(y5) for a bivariate normal distri- 
bution, and this property also holds for a bi- 
variate log normal distribution for certain 
ranges of the parameters. 

(3) 

Hartley and Ross (1954) were the first to 
give an exact upper bound for the bias of r and 
the unbiased ratio estimator: 

=r+ _(y x) (4) 
(n -1)X 

where is the sample mean of ri = yi /xi. Good- 

man and Hartley (1958) have shown that the vari- 
ance oft will often be larger than the vari- 
ance of r, for large n. 

We now consider two ratio estimators based 
on dividing the sample at random into g groups, 
each of size m, where n = mg. Following Mickey 

(1959), an unbiased estimator of R is given by 

t2 = rg + - rgx) (5) 

g 
where = E r'./g and r' is the classical ratio 

1 
estimator computed from the sample after omitting 
the j -th group, i.e., r' = (ny- myj) /(nx -mxj) 

where and are the sample means computed 

from the j -th group. It may be noted that t2 

reduces to t1 for the important case of n =2. 

Quenouille (1956) proposed a method of 
reducing estimation bias from order l/n to l/n , 

based on random division of the sample into 
groups. Durbin (1959) applied this method to 
ratio estimators and has shown that the estimator: 

t3 = gr - (g-1)r = E 
1 

(6) 

where rQj = gr - (g -1)r' (called pseudo -values by 

by Tukey), has bias of order n -2 at most. Durbin 
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has further shown that if the regression of y on 
x is linear (i.e., y = a + ßx + e where e is the 
error term) and x normally distributed (model 1, 
say), t3 with g = 2 has a smaller asymptotic 

variance than r. J. Rao (1965) has shown, for 
the above model, that both asymptotic bias and 
asymptotic variance of t3 are decreasing 

functions of g, so that g =n would be the optimum 
choice for large or moderately large n. Durbin 
(1959) has also considered the case where the 
regression of y on x is linear, but x has a 
gamma distribution (model 2, say). He has shown 
that, although the variance t3 with g =2 compared 

to the variance of r is slightly increased, the 
reduction in bias is such that the mean square 
error of t3 is reduced. Recently, J. Rao and 

Webster (1966) have shown, assuming model 2, that 
both bias and variance t3 are decreasing 

functions of g, so that g =n would be the optimum 
choice. They have also shown that t3 has a 

smaller variance than r for g > 2. It may be 
noted that the results for model 2 are exact for 
any sample size, n. 

Following Tukey (1958) we can use the simple 
estimator: 

g 

v(t3) = g-l(g-1) t3)2 (7) 
1 

as the variance estimator of t3, since the g 

estimators may be treated as approximately 

independent and t3 = E /g. Lauh and 

Williams (1963) have made a Monte Carlo study of 
the stabilities of v(r) and v(t3) with g =n, for 

small samples (n =2 to 9), using model 1 and 
model 2 (with exponential distribution for x) 
and assuming a =0 (i.e., regression through the 
origin). It was shown that the Monte Carlo 
variances of v(r) and v(t3) are about the same 

for model 1, whereas, for model 2, the variance 
of v(t ) is considerably smaller than that of 
v(r) 31ncidentally, Lauh and Williams have used 
v(t3) as the estimator of the variance of r 

rather than of the variance of t3. 

Tin (1965) investigated the large -sample 
bias, variance and approach to normality of the 
following estimators: r, t3 with g =2, Beale's 
estimator 

x y 
t4 =r 2 

s 

(1 + 2) 

and the modified estimator 

(8) 

s 

t5 -2) (9) 
x y x 

His comparison shows that t5 is slightly better 

than t4 which in turn is better than t3 with g =2. 

Tin has also made a Monte Carlo study for large 
and moderately large samples (n =50, 200, and 
1000), using model 1 and the results are in 
agreement with his mathematical results. J. Rao 
and Webster (1966) made an exact comparison of t5 

and t3 assuming model 2. Their comparison shows 

that the precisions of t5 and t3 with g =n are 
about the same. 

Tin (1965) has also considered the estimator: 

1 
g 

t6 
r 

(10) 

It may be noted that t6 is identical to t3 when 

g =2. Also, t6 is based on the group means and 

whereas, t3 is based on the complementary 

means /(n -m) and - -m). 

Hartley (see Pascual, 1961 and Sastry, 1965) has 
earlier proposed t6 with g =n and Murthy and 

Nanjamma (1959) have used t6 when g independent 

and interpenetrating sub -samples each of size m 
are available. 

Pascual (1961) proposed the following esti- 
mator obtained by estimating the bias of r 
approximately: 

1 t7=r+ 
(n-1)X 

It may be noted that the investigations by 
Pascual (1961) and Sastry (1965) regarding t6 

(with g =n) and t7 are not very satisfactory, since 

they assume_the higher order population moments of 
sxi = (xi- and 

= (yi- Y) 
are negligible 

and 1, whereas, to develop asymptotic 

theories for r, t2, t3, t4 and t5 we need only 

assume that n is large or moderately lar /e and 
or <1 where = (nx- /(n -m). 

Similarly, for the estimator t6 (g #n) an 

asymptotic theory would not be satisfactory if m 
is small. 

It is clear that efficiency comparisons in 

small or moderate size samples would be more valu- 
able since these are the cases in which freedom 
from bias may be important. Therefore, in the 
present paper, we make a Monte Carlo study of the 
efficiencies of the eight ratio estimators 
r, t1, t7 and the three variance estimators 

v(y /), v(r) and v(t3) for small and moderate size 

samples, using model 1. It may be noted that, 
unlike under model 1, exact analytical comparisons 
of the estimators can be made under model 2 for 
any sample size -- some exact results, under model 
2, have already been given by J. Rao and Webster 



(1966) and further work is in progress. 

We have used Lauh and Williams' model as 
well as that of Tin for our study. The model of 
Lauh and Williams is ideal for ratio estimators 
since it is assumed that the regression is 
through the origin and the coefficient of vari- 
ation of x, Cx, is small. On the other hand, 

Tin's model is not so favorable since the re- 
gression is not through the origin and Cx is not 

small. It would be interesting, therefore, to 
study the performances of the estimators under 
both the models. 

2. Monte Carlo Study 

In Lauh and Williams' model, xi is N(10, 4) 

and yi is defined as 5(xi + ei) where ei is 

N(0, 1) and independent of xi. Therefore, the 

correlation, P, between yi and xi is 0.89 and 

Cx = 0.2. In Tin's model, xi and yi have a bi- 

variate normal distribution with X = 5, = 45, 

= 15, = 500 and p = 0.4, 0.6 or 0.8. To 

carry out the experiment on the computer, the 
yi = + + ei was used, where =Y -ßX, 

= Pa /ax, and is -P2)] and distri- 

buted independently of xi. 

Using the IBM 7094 pairs of random numbers 

(uli, u2i) 
were generated from a rectangular 

distribution with mean 1/2 and range 1 and were 
transfromed into standard normal variates wli and 
by the transformation: 

w ( -2 logeuli)1 /2 sin 

w2i = ( -2 logeuli)1 
/2 

cos 

(see Box and Muller, 1958). Then the pairs 
yi) were computed as follows: For Lauh and 

Williams' model, xi = + and y.= 5(x. + 

w2i); for Tin's model, xi = X + and yi = 

+ xi + ei where ei = P2)1/2. For 

each selected n, 1000 samples of n pairs 
(xi,yi) 

were generated and the eight ratio estimators and 
the three variance estimators were computed from 
each sample. Thus we have 1000 values of each 
estimator for each selected n. 

The ratio estimators all have Cauchy distri- 
butions when the distribution of (x.,yi) is bi- 
variate normal so that the population moments do 
not exist. It may be meaningless, therefore, to 
use the variance (or mean square error) of the 
1000 values as a sample criterion in comparing 
the estimators. However, the variance would be a 
satisfactory criterion for Lauh and Williams' 
model since X is so large compared with that 

the range of x is effectively positive.. On the 
other hand, for Tin's model the probability of 
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getting a negative x -value is not negligible and 
the criterion of variance can lead to meaningless 
results, particularly for small n. Tin's results 
based on the variance may, however, be fairly 
satisfactory since he considered only large or 
moderately large n(n = 50, 200 and 1000). There- 
fore, we have used, for Tin's model, the following 
criteria for which expected values exist, and 
employed the variance criterion for Lauh and 
Williams' model: 

(1) Concentration. Proportion of the value 
of an estimator in some a priori neighborhood 
around the population ratio R. In this study, 
this interval is chosen as (R - 0.1, R + 0.1). 
An estimator T is more efficient than another 
estimator S if its concentration is larger than 
that of S. 

(2) Interquartile range. Distance between 
the upper and lower quartile points. Thus it is 

a range which contains one -half of the 1000 values 
of an estimator. An estimator T is more efficient 
than S if its interquartile range is smaller than 
that of S. 

2.1. Results for Lauh and Williams' Model 

The variances of the eight ratio estimators 
r, t1, (obtained from 1000 samples) are 
given in Tablé 1 for n =4, 6, 8 and 12. It may be 
noted that all the estimators are unbiased under 
this model. It is clear, from Table 1, that there 
are very little differences in the variances of 
the eight estimators, even for small n, and hence 
it does not matter which ratio estimator is used. 
We may, however, still make the following obser- 
vations: (1) the optimum number of groups, g, 
for the estimators t2, t3 and t6 is n, (2) for 

r)4, there are virtually no differences in the 
variances of t1, t2 (g =n), t3(g =n), t4, t5, 

t6(g =n) and t7; for n =4, t1 has a slightly larger 

variance, (3) the variances of tl, t7 are 
slightly smaller than that of r for 

Turning to the three variance estimators 
v(r) and v(tq), Table 2 gives the coef- 

ficients of variation of these estimators for n =4, 
6, 8 and 12 -- the criterion of coefficient of 
variation is more appropriate here since the vari- 
ance estimators do not have the same mean. 

The following tentative conclusions may be 
drawn from Table 2: (1) Coefficient of variation 
of v(tq) decreases considerably as g increases. 
(2) For any n, the coefficients of variation of 
v(r) and v(t ) with g =n are essentially equal. 
(3) Coefficient of variation of v(r) is slightly 
larger than that (for n>1) -- this is in 

agreement with Kokan's (1963) asymptotic result 
that the increase in the coefficient of variation 
of v(r) over that of v(y/2) would be small if C 
is small. We may conclude that the variance esi- 
mators v(r) and v(t3) with g =n are quite stable, 

for any n, compared to v(ÿß), if the regression 
is approximately through the origin and C 

x 
small. x 
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Table 1. Variances of the eight ratio estimators r, t ,..., t 

(obtained from 1000 samples)for selected values of n 7 

(Lauh and Williams' model) 

6 8 12 

Classical: r 0.0665 0.0398 0.0322 0.0219 

Hartley -Ross: t1 0.0661 0.0394 0.0318 0.0218 

g = 2 0.0397 0.0321 0.0218 

Mickey: t2 g = 0.0397 0.0319 0.0218 

g = n 0.0659 0.0394 0.0318 0.0218 

g = 2 0.0397 0.0321 0.0218 

Quenouille: t3 g = 0.0397 0.0318 0.0218 

g n 0.0658 0.0394 0.0318 0.0218 

Beale: t4 0.0659 0.0394 0.0318 0.0218 

Modified: t5 0.0659 0.0394 0.0318 0.0218 

g = 2 0.0397 0.0321 0.0218 

Tin: t6 g = 0.0397 0.0318 0.0218 

Hartley: g n 0.0659 0.0394 0.0317 0.0218 

Pascual: t7 0.0659 0.0394 0.0317 0.0218 

Table 2 

Coefficients of Variation of the Variance Estimators 

v67/1), v(r) and v(t3) for Selected Values of n (Laub and Williams' Model) 

Variance 
Estimator 6 8 

v) 0.85 0.61 0.52 

v(r) 0.86 0.67 0.55 

g = 2 1.45 1.38 

v(t3): g = 1.03 0.81 

g = n 0.87 0.68 10.54 

12 

o.42 

0.43 

1.34 

0.64 



2.2 Results for Tin's Model 

The interquartile ranges (for n =4, 6, 10, 20 

and 50) and the concentrations (for n =10, 20, and 
50) of the eight ratio estimators (obtained from 
1000 samples) are given in Table 3 for P =0.6, and 

in Table 4 for P =0.8. We have also computed the 
concentrations for n =4 and 6, but the values are 
erratic and, hence, unreliable -- this may be 
probably due to the narrowness of the interval 
(R -0.1, R +0.1). The variances are also given in 
Table 3 for =0.6 and n =10 to show that the 
criterion of variance may lead to meaningless 
results for small samples. The criterion of 
variance may, however, became satifactory with 
large or moderately large n, excepting for those 
estimators based on the individual ratios yi 

or the group ratios for small m. Therefore, 

we have included the hariances of r, t2, t3, t4, 

t5 and t6 (g =2) for nr50 - -- our values of the 

variance of r(0.313 with p =0.6 and 0.150 with 
=0.8) are fairly close to those obtained from 

the usual asymptotic variance formula (0.293 with 
P=0.6 and 0.148 with p =0.8), whereas Tin's values 
(0.376 with p =0.6 and 0.238 with p =0.8) are 

markedly different. 

The following tentative conclusions may be 
drawn from Tables 3 and 4: (1) Unlike under Lauh 
and Williams' model, the differences in the 

efficiences of the estimators are quite signifi- 
cant. (2) The interquartile ranges (for all n) 

and the variances (for n =50) of t2 and t3 appear 

to decrease as g increases, but, for n > 10, the 
values for g = n/2 and g =n are essentially equal. 
The concentrations of t2 and t seem to increase 

as g increases, excepting that in one case (n =10, 

P=0.6) the concentration of t2 is 7.1% for g =2, 

7.3% for g = n/2 and 7.0% for g =n. In any case, 
the combined evidence of the three criteria seems 
to indicate that the optimum value of g for t2 
and t may be taken as n. Moreover, with g =n 
there3is no random splitting involved and the 

ratio simply given by n -1 E (ny - 

- x.). (3) Efficiency of t6 is maximum at 

g =2 unlike under Lauh and Williams' model. This 
may be because t6 is biased under Tin's model and 

as Tin pointed out, the bias increases as g 
increases. (4) All three criteria indicate that 
the efficiencies of t2(g =n), t3(g =n), t4 and t5 

are about the same for n > 10; for n =4 and 6, t4 

appears to be more efficient than the others. 

All the above four estimators are more efficient 
than r, expecting that in one case (n =50, p =0.8), 
the concentrations are essentially equal. (5) r 

is more efficient than t6(g =2) for n =4 and 6; for 

n > 10 the efficiencies are about the same, 
excepting that in one case (n =10, p =0.6) the 

concentration of t6(g =2) is somewhat low. (6) r 

is more efficient than Hartley's estimator t6 

(g =n), Pascual's estimator t7 and the Hartley - 

Ross unbiased estimator t1. The efficiencies of 
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t6(g =n), t7 and t1 are about the same for n =4 and 

6; for n > 10, t1 is less efficient than t6(g =n) 

and t7. 

Turning to the variance estimators, the 
interquartile ranges (for n =10, 20 and 50)_and 
coefficients of variation (for n =50) of v(y /), 
v(r) and v(t3) are given in Table 5. We have not 

computed the concentrations around the variances 
because, as pointed out earlier, the Monte Carlo 
variances of r and t3 would be meaningless for 

small samples. First, considering the criterion 
of coefficient of variation (for n =50) it is clear 
from Table 5 that the coefficient of variation of 
v(t3) decreases considerably as g increases, so 

that the optimum value of g is n. The coef- 
ficients of variation of v(t3) (with g =n) and 

v(r) are essentially equal, but both are consider- 
ably larger than the coefficient of variation of 
v(y /i) -- this is in agreement with Kokan's (1963) 
result because Cx is not small. Turning to the 

criterion of interquartile range, it may be noted 
that, in comparing the variance estimators, it 

would be more appropriate to take the interquar- 
tile ranges given in Table 5 relative to the 
interquartile ranges of the corresponding esti- 
mators of R. Now since the interquartile range of 
t3 (for any n) is smaller than that of r which in 

turn is considerably smaller (for p =0.8) than that 
of y /7, it follows from Table 5 that v(r) is 
slightly more efficient than v(t3) with g =n (par- 

ticularly for n =10), but v(y /) is considerably 
more efficient than v(r) and v(t3) with g =n. 

3. Concluding Remarks 

The approximately unbiased ratio estimators 
cannot be expected to help when very small samples 
are taken within strata. In such situations, 

Mickey's unbiased estimator (with g =n) may be 
promising since it behaves well under ideal con- 
ditions and, under non -ideal conditions, it is 
considerably more efficient than the Hartley -Ross 
unbiased estimator and also slightly more ef- 
ficient than the classical estimator. However, 
for the important case of n =2 in each stratum, 
Mickey's estimator is identical to the Hartley - 
Ross estimator so that no improvement can be 
achieved. If an approximately unbiased estimator 
serves the purpose, then Quenouille's estimator 
(with g =n), Beale's estimator and the modified 
estimator look favorable, and it does not matter 
which one is used (although Beale's estimator 
looks slightly more efficient for n =4 and 6). 
However, Quenouille's estimator has the added 
advantage of having a simple variance estimator 
(Tukey's variance estimator). The approximately 
unbiased estimators of Hartley and Pascual appear 
to be unsatisfactory compared to the above approxi- 
mately unbiased estimators. 

Since both Tukey's variance estimator and the 
usual variance estimator of the classical ratio 
estimator are considerably less efficient, under 
non -ideal conditions, than the variance estimator 
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TABLE 3 

Interquartile ranges (I.R.), concentrations (C) and variances (V) of the eight ratio estimators 

(obtained from 1000 samples) for selected values of n and p = 0.6 

(Tin's model) 

Estimator 
n =4 n =6 n =10 n =20 n =50 

I.R. I.R. I.R. % C V I.R. C I.R. % C V 

Classical: r 2.8 2.3 1.8 6.5 51 1.07 9.1 0.72 17.1 0.31 

Hartley -Ross: t1 4.0 3.2 2.5 4.5 1988 1.63 6.8 1.05 12.8 

g = 2 3.7 2.5 1.9 7.1 90 1.09 9.o 0.71 16.3 0.31 

Mickey: t2 g = 3.7 2.3 1.5 7.3 466 0.96 10.7 0.68 18.5 0.25 

g = n 2.6 1.7 1.4 7.0 637 0.96 10.7 0.68 18.9 0.28 

g = 2 3.5 2.6 1.9 5.0 404 1.06 9.1 0.71 16.4 o. 

Quenouille: t3 g = 3.5 2.4 1.5 6.1 6407 0.93 9.5 0.67 18.6 0.2 

g = n 2.7 1.9 1.4 7.7 11508 0.93 0.67 19.2 0.2 

Beale: t4 1.7 1.6 1.4 6.8 1 0.96 10.9 0.68 19.2 0.2 

Modified: t5 2.1 1.7 1.4 6.7 544792 0.94 11.6 0.68 19.1 0.2 

g = 2 3.5 2.6 1.9 5.0 404 1.06 9.1 0.71 16.4 0.3 

Tin: t6 g = 3.5 3.1 2.3 5.0 2494 1.29 8.5 0.78 14.6 

Hartley: g n 3.0 2.2 4.9 119 1.24 7.6 0.77 15.3 

Pascual: t7 4.0 3.1 2.2 5.7 166 1.26 7.2 0.77 14.9 

of the estimator which does not use the supple- 
mentary information, caution is needed in the 
indiscriminate use of ratio estimators. 

It may be noted that the main reason for 
using Mickey's unbiased estimator or an approxi- 
mately unbiased estimator over the classical 
estimator is to eliminate or reduce bias in 
situations where freedom from bias is important; 
however, it is gratifying that these estimators 
may, in fact, lead to small or moderate gains in 
efficiency over the classical estimator. 

The conclusions from this study are not 
necessarily applicable to all populations, since 

we have considered only two particular models; 
however, these models reflect many situations 
that are encountered in practice. Also, our 
study is of necessity empirical in nature and 
not mathematical. Clearly therefore, further 
work, mathematical as well as empirical, using 
other models and actual data is needed. To this 
end, we are at the present time investigating 
the following problems: 

(1) Asymptotic results for Mickey's esti- 
mator along the lines of J. Rao (1965) 
using Durbin's model 1. 

(2) Exact mathematical results for the 

eight ratio estimators and the three 
variance estimators considered in this 
paper, using Durbin's model 2. 

(3) Mathematical and Monte Carlo results 
when x has a log normal distribution. 

(4) Empirical results using several sets of 
real data. 

(5) Results for other models. 
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TABLE 4 

Interquartile ranges (I.R.), concentrations (C) and variances (V) of the eight ratio estimators 

r,t ,..,t (obtained from 1000 samples) for selected values of n and p = 0.8 
1 7 (Tin's model) 

Estimator 
n=6 n=10 n=20 n=50 

I.R. I.R. I.R. C I.R. C I.R. C 

Classical: r 1.9 1.6 1.3 7.7 0.81 15.4 0.50 23 0.15 

Hartley-Ross: t1 2.8 2.2 1.9 5.6 1.20 9.2 0.73 15 

g = 2 2.3 1.8 1.3 8.0 0.80 15.4 0.51 22 0.15 

Mickey: t2 g = 2.3 1.6 1.1 9.1 0.72 16.0 0.49 23 0.14 

g = n 1.9 1.2 1.0 10.5 0.72 16.0 0.49 23 0.14 

= 2 2.5 1.9 1.3 8.3 0.81 14.8 0.51 22 0.15 

Quenouille: t3 = 2.5 1.7 1.1 8.5 0.70 16.0 0.49 23 0.14 

= n 2.0 1.4 1.0 10.0 0.70 16.2 0.48 23 0.14 

Beale: t4 1.3 1.2 1.0 9.9 0.71 16.2 0.48 23 0.14 

Modified: t5 1.7 1.3 1.0 10.3 0.69 16.0 0.48 23 0.14 

g = 2 2.5 1.9 1.3 8.3 0.81 14.8 0.51 22 0.15 

Tin: t6 g = 2.5 2.1 1.5 7.7 0.93 11.1 0.56 22 

Hartley: g = n 2.9 2.1 1.5 6.1 0.88 12.7 0.55 20 

Pascual: t7 2.8 2.2 1.6 7.1 0.89 13.3 0.55 20 

Table 5 

Interquartile ranges and coefficients of variation of the 

variance estimators v(ÿ /y), v(r) and v(t3) for selected 

values of n and p (Tin's model) 

Variance 
Estimator 

p=0.6 
Interquartile range 

o 
Variatiod Interquartile range 

Coeff. of 
Variation 

n=10 n=20 n=50 n=50 n=10 n=20 n=50 n=50 

1.3 0.43 0.11 0.20 1.21 0.42 0.10 0.20 

v(r) 3.1 0.97 0.20 0.61 1.60 0.45 0.09 0.51 

g=2 4.2 1.55 0.47 2.21 2.26 0.81 0.22 2.22 

v(t3): 2 4.4 1.08 0.22 0.66 2.24 0.52 0.10 0.58 

g=n 3.7 0.97 0.20 0.61 1.88 0.46 0.10 0.51 
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